1 (Sem-4) CHE 1

2025

CHEMISTRY

Paper: CHE0400104

(Inorganic Chemistry-I)

Full Marks: 45

Time: Two hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: 1×5=5
 - (i) The point group symmetry for benzene is:
 - (a) C_{6h}
 - (b) D_{6h}
 - (c) C_{6v}
 - (d) D_{2d}

(Choose the correct option)

- (ii) In the complex [E(en)₂(C₂O₄)]NO₂ (where (en) ethylenediamine); the coordination number and the oxidation state of the element 'E' are respectively.
 - (a) 6 and 2
 - (b) 2 and 2
 - (c) 4 and 3
 - (d) 6 and 3

(Choose the correct option)

- (iii) La³⁺, Lu³⁺, Yb²⁺, Ce⁴⁺ is diamagnetic, while Sm³⁺ exhibits low paramagnetic behaviour. Why?
- (iv) Which of the following oxides of a firstrow transition metal is most acidic in nature?
 - (a) TiO₂
 - (b) Mn_2O_7
 - (c) Fe₂O₃
 - (d) CuO

(Choose the correct option)

- (v) The mass defect of a nucleus is 0.035 amu. If 1 amu corresponds to 931.5 MeV of energy, what is the binding energy of the nucleus?
 - (a) 32.6 MeV
 - (b) 326.0 MeV

- (c) 26.6 MeV
- (d) 931.5 MeV (Choose the correct option)
- 2. Answer **any five** from the following questions: 2×5=10
 - (i) What do you mean by identity (E) and n-fold proper axis of symmetry (C_n) element?
 - (ii) What is Nuggest? How electrode potential values determine the occurrence of meatal in ore.
 - (iii) Why do second and third transition series elements (e.g., Mo, W) exhibit higher oxidation states more readily than their first-row counterparts (e.g., Cr)?
 - (iv) Aqueous solution of Cu²⁺ ions is blue in colour whereas that of Zn²⁺ is colorless. Explain.
 - (v) Determine the configuration in term of $t_{2g}^{\ \ x}e_g^y$ and the number of unpaired electrons of the $[Fe(CN)_6]^{3-}$.
 - (vi) Tetrahedral complexes are only high spin complexes. Explain.

B06FN 0062A

- (vii) ²⁴Na decays to one-fourth of its initial amount in 29.8 hours. Find out its decay constant.
- (viii) Explain why actinides form oxocation while lanthanides donot?
- (ix) Which is more basic La(OH)₃ or Lu(OH)₃ ? Why ?
- (x) What are interfering radicals? When and Why is it necessary to remove?
- 3. Answer any four from the following questions: 5×4=20
 - (i) Discuss the conditions under which symmetry elements form a group.
 - (ii) Find and show with diagram all the symmetry elements of either NH₃ or BF₃ molecule and write its point group.
 - (iii) How the energy level of d-orbital changes during distortion of an octahedral Cu(II) complex? Discuss.
 - (iv) Explain the trend in the acid-base character of oxides across the first-row transition elements. Why does TiO₂ exhibit amphoteric behaviour, while CuO is basic?

- (v) Show and explain the d-orbital splitting from octahedral to square planar complexes via square pyramidal structure.
- (vi) What is lanthanide contraction and what is its cause? How the lanthanide contraction affects the basicity of ions? 2+1+2=5
- (vii) The latimer diagram of Fe in acidic solution is given below:

$$Fe^{3+} \xrightarrow{+0.77} Fe^{2+} \xrightarrow{-0.44} Fe$$

- (a) Calculate the E⁰ for the reduction of Fe³⁺ to Fe. 2
- (b) What is the most stable oxidation state of Iron?
- (c) Does it Fe²⁺ undergoes disproportionation? Justify your answer.
- (viii) Describe Fermi's theory of beta decay.

 Explain how the theory accounts for the emission of electrons and neutrinos in beta-minus decay.

- 4. Answer any one from the following questions:
 - (i) (a) A given molecule is assigned with the point group D₃h. What infomation will it provide in terms of symmetry?
 - (b) What is the origin of paramagnetism in inorganic compound? [Fe(H₂O)₆]³⁺ more paramagnetic than [Fe(CN)₆]³⁻. Why? 2+2=4
 - (c) What is an Ellingham diagram? What thermodynamic information does it provide about the formation of metal oxides?

 1+2=3
 - (ii) (a) Give an account for oxidation states, stability and magnetic properties of actinide elements and compare with those of the transition metals. 2×3=6
 - (b) What factors determine the stability of a nucleus, and how does the neutron-to-proton ratio influence whether a nucleus is likely to undergo radioactive decay?

 2+2=4

- (iii) (a) What is meant by crystal field splitting energy? On the basis of crystal field theory, write the eletronic configuration of d^4 in therms of t_{2g} and e_g in an octahedral field when (i) $\Delta_0 > P$ and (ii) $\Delta_0 < P$. 1+2=3
 - (b) What is Jahn-Teller distortion?

 Describe the conditions which lead to Z-out distortion in octahedral complexes?

 1+3=4
 - (c) Calculate the CFSE of a d⁶ complex having $\Delta = 25000$ cm⁻¹ and P=15000 cm⁻¹.
- (iv) (a) Construct a Frost diagram from the following latimer diagram.

$$O_2 \xrightarrow{+0.70} H_2O_2 \xrightarrow{+1.76} H_2O$$

(b) Discuss the applications of radioisotopes in age determinations.

B,