3 (Sem-4/CBCS) CHE HC 1

2025

CHEMISTRY

(Honours Core)

Paper: CHE-HC-4016

(Inorganic Chemistry-III)

vd bee Full Marks: 60 hoeliw whi

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (i) What is ambidentate ligand? Give example.
 - (ii) The number of heme groups present per haemoglobin molecule is
 - (a) 4
 - (b) 3
 - (c) 6
 - (d) 2 100 11 500010)

(Choose the correct answer)

- (iii) Of the five d-orbitals of a Transition metal ion in a square planer complex, the orbital with highest energy will be
 - (a) d_{xy}
 - (b) $d_{x^2-y^2}$
 - (c) d₂2
 - (d) d_{yz}

(Choose the correct answer)

- (iv) Wilson diseases is caused by the deficiency of
 - (a) Cu
 - (b) Hg
 - (c) Pb
 - (d) Fe

(Choose the correct answer)

- (v) Give an example of Macrocyclic ligand.
- (vi) Which one of the following has the largest atomic radius?
 - (a) Fe
 - (b) Co
 - (c) Cr
 - (d) Zn

(Choose the correct answer)

- (vii) Carbonyl ligand is also known as π -acid ligand because
- (a) it has filled hybrid orbital
 - (b) it has vacant π antibonding orbital
- (c) it has vacant π bonding molecular orbital
- (d) it has vacant hybrid orbital (Choose the correct answer)
- 2. Answer the following: 2×4=8
 - Hydrated copper sulphate is blue in colour but anhydrous copper sulphate is colourless. Explain.
 - (ii) Draw geometrical isomers of the complex $\left[Co \left(NH_3 \right)_3 Cl_3 \right]$. Are the isomers optically active?
 - (iii) What is disproportionation reaction?

 Explain with example.
 - (iv) Transition elements have high atomization energy. Explain.
- 3. Answer **any three** questions from the following: 5×3=15
 - (i) Describe separation of lanthanides by ion-exchange method.

3

- (ii) Explain John-Teller distortion by crystal field theory. What are the conditions of John-Teller distortion is an octahedral complex? How can you predict Z-out and Z-in distribution is an octahedral complex? 2+2+1=5
- (iii) Define Transition element. Write their general electronic configuration. "Zn, Cd and Hg are not considered as true Transition element." Explain why?

 Write electronic configuration of Cr³⁺.

 1+1+2+1=5
- (iv) What is Latimer diagram? Latimer diagram for irons is given as

$$FeO_4^{2-} \xrightarrow{+2\cdot20V} Fe^{3+} \xrightarrow{0.77V} Fe^{2+} \xrightarrow{-0.445V} Fe^0$$

Determine the value of $E_{FeO_4^{2-}/Fe^{2+}}^0$
 $1+4=5$

(v) What is crystal field stabilization energy? Which one of the given pairs of complexes has largest CFSE?

(a)
$$\left[Cr\left(H_2O\right)_6\right]^{2+}$$
 or $\left[Mn\left(H_2O\right)_6\right]^{2+}$

(b)
$$\left[Fe \left(CN \right)_6 \right]^{3-}$$
 or $\left[Ru \left(CN \right)_6 \right]^{3-}$

- 4. Answer any three from the following questions: 10×3=30
 - (i) (a) Explain magnetic property and colour of transition metal complexes with the help of crystal field theory. 2+2=4
 - (b) Discuss about the oxidation states of first row Transition elements.
 - (c) Write consequences of lanthanide contraction.
 - (ii) (a) Write applications of Frost diagram.
- (b) Write application of potassium permanganate in quantitative analysis.
- (iii) Discuss the synthesis, structures and bonding in $Fe(Co)_5$, $Fe_2(Co)_9$, and $Fe_3(Co)_{12}$. Compare the Γ and π -bonding ability of Co and No^+ as ligands. 6+4=10

- (iv) (a) Write IUPAC name of the following compounds: 1×2=2
- latem double [Hg I3] nislax (a)
- (ii) $\left[Ag\left(NH_3\right)_2\right]OH$
 - (b) What type of isomerism are exhibited by the following complexes? 1×2=2
- bimadinal (i) $\left[\text{Co} \left(\text{NH}_3 \right)_5 \text{Br} \right] \text{SO}_4$
 - (ii) $\left[Co \left(NH_3 \right)_5 NO_2 \right]^{2+}$
 - (c) Define the terms 'labile' and 'inert' of the coordination compounds.

 Compare these aspects with stability of compounds with appropriate examples. 2+4=6
- (v) (a) Discuss the function of Haemoglobin and Myoglobin. Explain the terms 'cooperative effect' and 'Bohr effect'.
 - (b) Give an account of Storage and Transport of iron in human body.

- (vi) (a) Write toxic effect of Hg and As in biological system. 2+2=4
 - (b) What important roles iron and zinc play in biological system?

 2+2=4
 - (c) Write about use of Pt or Au complexes in medicine. 2