3 (Sem-4/CBCS) MAT HC 1

2025

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4016

(Multivariate Calculus)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed:

 1×10=10
 - (a) Let $f(x,y) = x^2y + xy^2$, if t is a real number then find f(1-t,t).
 - (b) Evaluate $\lim_{(x,y)\to(0,0)} \frac{e^x \tan^{-1} y}{y}$
 - (c) Determine $\frac{\partial z}{\partial x}$, if $3x^2 + 4y^2 + 2z^2 = 5$.

- (d) Define harmonic function.
- (e) Find $\nabla f(x,y)$ for $f(x,y) = x^2y + y^3$
- (f) Evaluate $\int_0^4 \int_0^{4-x} xy \, dy \, dx$.
- (g) Define relative extrema for a function of two variables.
- (h) Compute $\int_{1}^{4} \int_{-2}^{3} \int_{2}^{5} dx \, dy \, dz$.
- (i). What is the del operator?
- (i). What is a vector field?
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Determine f_x and f_y for $f(x,y) = x^2 e^{x+y} \cos y$
 - (b) Evaluate $\int_{1}^{2} \int_{0}^{\pi} x \sin y \, dy \, dx$

- (c) Find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ when u = x 2y, v = 3x 5y.
- (d) Find the curl of the vector field $\vec{F} = x^2 yz \,\hat{i} + xy^2 z \,\hat{j} + xyz^2 \,\hat{k} \,.$
- (e) Explain the difference between $\int_{c} f ds$ and $\int_{c} f dx$.

ansig-ux

- 3. Answer **any four** questions : 5×4=20
 - (a) Compute the slope of the tangent line to the graph of $f(x,y) = x^2 \sin(x+y)$ at the point $P_0\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$.
 - (b) Find all relative extrema and saddle points of the function $f(x,y) = 2x^2 + 2xy + y^2 2x 2y + 5.$

- (c) Evaluate $\iint_R x^2 e^{xy} dA; \ R: 0 \le x \le 1, \ 0 \le y \le 1.$
- (d) Evaluate $\iint_D x dV$, where D is the solid in the first octant bounded by the cylinder $x^2 + y^2 = 4$ and the plane 2y + z = 4.
- (e) Find the volume of the solid in the first octant that is bounded by $x^2 + y^2 = 2y$, the half-cone $z = \sqrt{x^2 + y^2}$, and the xy-plane.
- (f) If $\vec{F}(x,y,z) = xy\hat{i} + yz\hat{j} + z^2\hat{k}$ and $\vec{G}(x,y,z) = x\hat{i} + y\hat{j} z\hat{k}$ then find curl $(F \times G)$.
- 4. Answer **any four** questions: 10×4=40
 - (a) Let $f(x,y) = \begin{cases} xy \left(\frac{x^2 y^2}{x^2 + y^2} \right), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ Show that $f_x(0,y) = -y$ and $f_x(x,0) = x$ for all x and y. Then show that $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$.

(b) When two resistors with resistances P and Q ohms are connected in parallel, the combine resistance is R, where

$$\frac{1}{R} = \frac{1}{P} + \frac{1}{Q}$$

If P and Q are measured at 6 and 10 ohms respectively, with error no greater than 1%, what is the maximum percentage error in the computation of R?

- (c) (i) If f is differentiable and $z = u + f(u^2 v^2).$ Show that $u \frac{\partial z}{\partial u} v \frac{\partial z}{\partial v} = u.$ 5
- (ii) If f(x,y) is a homogeneous function of degree n, show that

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf.$$

(d) (i) Define directional derivative. 2

5

- (ii) Let f(x,y,z) = xyz, and let \hat{u} be a unit vector perpendicular to both $\vec{v} = \hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{w} = 2\hat{i} + \hat{j} \hat{k}$. Find the directional derivative of f at $P_0(1,-1,2)$ in the direction of \vec{u} .
- (e) (i) Find $\operatorname{div} \vec{F}$, given that $\vec{F} = \nabla f$, where $f(x,y,z) = xy^3z^2$.
 - (ii) If $\vec{F}(x,y) = u(x,y)\hat{i} + v(x,y)\hat{j}$, Show that

Curl $\vec{F} = 0$ if and only if $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$.

6

- (f) Let $\vec{F} = xy^2 \hat{i} + x^2y \hat{j}$ and evaluate the line integral $\int_C \vec{F} \cdot d\vec{R}$ between the points
 - (0,0) and (2,4) along the following path:
 - (i) the line segment connecting the points.
 - (ii) the parabolic are $y = x^2$ connecting the points.

(g) Evaluate the line integral x dy - y dx

$$\oint_C \frac{x \, dy - y \, dx}{x^2 + y^2}$$

where C is the unit circle $x^2 + y^2 = 1$ traversed once counter clockwise.

(h) Show that the vector field $\vec{F} = (e^x \sin y - y)\hat{i} + (e^x \cos y - x - 2)\hat{j}$ is conservative and then find a scalar potential function f for \vec{F} .