Total number of printed pages-7 Box wolf (b)

 $x^2 + 3x + 2 = 0$ have in 3 (Sem-4/CBCS) MAT HC 3 (e) Find all the maximal ideals in Is.

(1)

(h) State who

mot a PID

San MATHEMATICS 21 JEHW

(Honours Core) (a) is the polynomial

x + x + 4 irreducible Paper: MAT-HC-4036

(Ring Theory)

Full Marks: 80 out ei

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed: $1 \times 10 = 10$
 - (a) Show that the centre of Define characteristic of a ring. (a)
 - (b) State whether the following statement is True or False: are fol and F " $2\mathbb{Z}U3\mathbb{Z}$ is a subring of \mathbb{Z} ".
 - In the ring of integers, find a positive (c) integer x such that $\langle x \rangle = \langle m \rangle + \langle n \rangle$.

- (d) How many zeros does the equation $x^2 + 3x + 2 = 0$ have in \mathbb{Z}_6 ?
- (e) Find all the maximal ideals in \mathbb{Z}_8 .
- (f) What is the characteristic of $\mathbb{Z}_m \oplus \mathbb{Z}_n$?
- (g) Is the polynomial $x^2 + x + 4$ irreducible over \mathbb{Z}_{11} ?
- (h) State whether the following statement is *True* or *False*: " \mathbb{Z}_6 is a subring of \mathbb{Z}_{12} ".
- (i) Define prime ideal of a ring.
- (j) Given an example of a UFD, which is not a PID.
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Show that the centre of a ring is a subring.
 - (b) Prove that the only ideals of a field F are {o} and F itself.
 - (c) Is the mapping $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_{30}$ given by $\phi(x) = 6x$ a ring homomorphism?

2

- (d) Consider $f(x) = x^3 + 2x + 4$ and g(x) = 3x + 2 in $\mathbb{Z}_5[x]$. Determine the quotient and remainder upon dividing f(x) by g(x).
- (e) Let $f(x) = x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$. Write f(x) as a product of irreducible polynomials over \mathbb{Z}_2 .
- 3. Answer any four questions: 5×4=20
 - (a) Let x be a positive integer. Show that $Q\left[\sqrt{x}\right] = \left\{a + b\sqrt{x} : a, b \in Q\right\}$ is a field.
 - (b) Let R be a commutative ring with unity. Show that an ideal A of R is prime if and only if the quotient ring R/A is an integral domain.
 - (c) Define integral domain. Prove that if D is an integral domain, then the polynomial ring D[x] is also an integral domain. 1+4=5
 - (d) Show that every Euclidean domain is a principal ideal domain.

- (e) Show that $x^4 + 1$ is irreducible over Q but reducible over \mathbb{R} .
 - (f) Let D be a PID and let $p \in D$. Prove that $\langle p \rangle$ is maximal in D if and only if p is irreducible.
- 4. Answer the following questions: 10×4=40
 - (a) (i) Define subring. Prove that a nonempty subset S of a ring R is a subring. If S is closed under subtraction and multiplication.

6=6±1 Let x be a positive integer. Show that

Let $R = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ and $S = \{(a,b,c) \in R : a+b=c\}$. Prove or disprove that S is a subring of R.

Orniamob largaini

- (i) Let R be a finite commutative ring with unity. Prove that every nonzero element of R is either a zero-divisor or a unit.
- (ii) Describe all zero-divisors and units of $\mathbb{Z} \oplus Q \oplus \mathbb{Z}$.

(b) (i) Let ϕ be a ring homomorphism from R to S. Then the mapping from $R/Ker\phi$ to $\phi(R)$, given by $r+Ker\phi \rightarrow \phi(r)$ is an isomorphism, i.e., $R/Ker\phi \cong \phi(R)$.

(ii) Let $S = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$. Show that $\phi : \diamondsuit \to S$ given by $\phi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a ring isomorphism.

27079 (CH(D)A (OR-(A)X) = 1

For a field \mathbb{F} , define and prove the division algorithm for $\mathbb{F}[x]$.

2+8=10 Show that (x2+1) is a field 3

(c) (i) Prove that $\mathbb{Z}\left[\sqrt{5}\right]$ is not a unique factorization domain.

(ii) Show that the ring of Gaussian integers $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ is a Euclidean domain with $d(a+ib) = a^2 + b^2$.

OR (mainigromos)

- (i) Find all units, zero-divisors, idempotents and nilpotent elements in $\mathbb{Z}_3 \times \mathbb{Z}_6$.
- (ii) Let \mathbb{F} be a field of prime characteristic p. Prove that $K = \{x \in \mathbb{F} : x^p = x\}$ is a sub field of \mathbb{F} .
- (d) (i) In $\mathbb{Z}[x]$, the ring of polynomials with integer coefficients, let $I = \{f(x) \in \mathbb{Z}[x] : f(0) = 0\}$. Prove that $I = \langle x \rangle$.
- (ii) Show that $\sqrt[R]{\langle x^2 + 1 \rangle}$ is a field. 3
 - (iii) Show that the kernel of a homomorphism is an ideal. 2

OR

- (i) Let \mathbb{F} be a field, then show that $\mathbb{F}[x]$ is a principal ideal domain.
 - (ii) Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}(x)$$
If there is a prime p such that $p \nmid a_n$, $p \mid a_{n-1}, \dots, p \mid a_0$ and $p^2 \nmid a_0$.

Then show that $f(x)$ is irreducible over Q .

Show