1 (Sem-4) PHY 3

## 2025

## **PHYSICS**

Paper: PHY0400304

(Analog Electronics)

Full Marks: 45

Time: 2 hours

## The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions:  $1 \times 5=5$ 
  - (a) What is the output frequency of a full wave rectifier where input frequency is 100Hz?
  - (b) In \_\_\_\_\_ amplifier, the collector current flows for less than half cycle of the input signal.
  - (c) What type of amplifier is used to reject hum and static voltage induced into its input leads?

- (d) The change in the output wave shape from input wave shape in an amplifier is called \_\_\_\_\_.
- (e) State the biasing method of a photodiode.
- 2. Answer the following questions: (any five) 2×5=10
  - (a) Why does the frequency response of a RC coupled amplifier decrease with increasing frequency after cutoff?
  - (b) How is electrostatic deflection caused in a CRO?
  - (c) What happens when the feedback resistance of an operational amplifier is replaced by a (i) capacitor (ii) diode? Write an expression for the output voltage in each case.
  - (d) Why is a diode called a non-linear device?
  - (e) Define CMRR. What is the significance?
  - (f) Explain Q point of a transistor.
  - (g) What is static and dynamic resistance of a diode?

- (h) State the principle behind light emitting diodes.
- (i) State the role of coupling capacitors and bypass capacitor in a two state stage RC coupled amplifiers.
- (j) State the characteristics of an ideal Op-Amp.
- 3. Answer the following questions: (any four) 5×4=20

(a) 1+2+2=5

- (i) Draw the circuit diagram of a full wave rectifier circuit with a filter.
- (ii) Draw and explain the nature of signal at various stages.
- (iii) A power supply A delivers 15VDC with a ripple of  $0.6V_{rms}$  while another power supply B delivers 20VDC with a ripple of  $2mV_{rms}$ . Which power supply is better and why?

(b) 1+1+3=5

- (i) Define faithful amplification of a transistor amplifier.
- (ii) How is faithful amplification obtained in CE configuration?

- Draw the characteristics of a transistor amplifier and show the active, cutoff and saturation region. Why does these region's occur?
- How does negative feedback effect the input and output impedance of an amplifier? How is the change profitable in practice? 2+3=5

2+2+1=5 (d)

- What is Barkhausen Criteria for continuous undamped oscillations?
- How is this criteria met in RC phase-shift oscillator?
- A phase-shift oscillator uses 10pF capacitor. Find the value of R to produce a frequency of 1000kHz.

2+2+1=5(e)

- Draw the characteristic of Zener diode. How does this differ from a normal diode?
- On what does the breakdown voltage depend on and how can this voltage be changed?
- (iii) How is a Zener diode biased and why?

- Why is CE configuration used in 90-95% of all the transistor applications?
- A sinusoidal signal whose amplitude is 1V is applied at the input terminals of
  - An inverting amplifier of  $R_1 = 1k\Omega$ ,  $R_F = 2k\Omega$ .
  - A non-inverting amplifier with  $R_1 = 1k\Omega$ ,  $R_F = 2k\Omega$ .
  - A comparator circuit.

Draw the output in each case if  $R_R$  is the feedback resistance and the power supply is  $V_{cc} = \pm 10V$ . What is the function of negative feedback from the analysis? 3+2=5

(h) 1+1+3=5

- (i) What is 3dB frequency or half power frequency?
- What does half power frequency denote?
- condition of Explain the distortionless amplification based on frequency response.

B06FN 0152

- 4. Answer the following questions: (any one)
  - (a) 2+3+5=10
    - (i) What is stabilization in amplifiers?
    - (ii) Why is stabilization required? Explain.
    - (iii) Compare stability of Fixed Bias and Voltage Divider bias explaining the reason behind this.
  - (b) 5+5=10
    - (i) How does the energy band diagram of a P-N junction change in forward bias and reverse biased condition?
    - (ii) How is the current across the junction caused for the two conditions? Explain with required diagrams.
  - (c) 2+3+5=10
    - (i) What are h parameters?
    - (ii) Draw the h parameter equivalent circuit for a CE configuration.
    - (iii) Find expressions for input and output impedance of an amplifier as a function of the h parameter.

- (d) 2+2+6=10
  - (i) Define Slew Rate of an OP-AMP.
  - (ii) What is the use of slew rate in applications of OP-AMPs?
  - (iii) It is required to design a circuit using OP-AMP to obtain the output

$$V_{out} = (2V_1 + 3V_2 - 4V_3)$$

draw a circuit to obtain the output if  $V_1$ ,  $V_2$  and  $V_3$  are the inputs.