Total number of printed pages-16

3 (Sem-6/CBCS) MAT HC 1 (N/O)

2025

MATHEMATICS

(Honours Core)

Paper: MAT-HC-6016

[New Syllabus]

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

[Old Syllabus]

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

[New Syllabus]

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

1. Answer the following as directed:

$$1 \times 10 = 10$$

(a) A bounded function $f:[a,b] \to \mathbb{R}$ is integrable if for each $\varepsilon > 0$, there exists a partition P such that

(i)
$$U(f,P) < \varepsilon + L(f,P)$$

(ii)
$$U(f,P) < \varepsilon - L(f,P)$$

(iii)
$$U(f,P) > \varepsilon + L(f,P)$$

(iv)
$$U(f,P) > \varepsilon - L(f,P)$$

(Choose the correct option)

- (b) State mean value theorem for integrals.
- (c) Evaluate $\Gamma \frac{3}{2}$.
- (d) Define Euclidean metric on \mathbb{R}^n .

(e) The open ball $S\left(\frac{1}{2},1\right)$ on the usual metric space (\mathbb{R},d) is

(i)
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

(ii)
$$\left(\frac{1}{2}, -\frac{3}{2}\right)$$

(iii)
$$\left(-\frac{1}{2}, \frac{3}{2}\right)$$

(iv)
$$\left(-\frac{1}{2}, -\frac{3}{2}\right)$$

(Choose the correct option)

(f) Let X be a non-empty set. If $d: X \times X \to \mathbb{R}$ is a pseudometric on X, then which of the following statement is false?

(i)
$$d(x, y) \ge 0$$
 for all $x, y \in X$

(ii)
$$d(x, y) = 0 \Rightarrow x = y$$
 for all $x, y \in X$

(iii)
$$d(x, y) = d(y, x)$$
 for all $x, y \in X$

(iv)
$$d(x, y) \le d(x, z) + d(z, y)$$
 for all $x, y, z \in X$

(Choose the correct option)

- (g) If A is a non-empty subset of a metric space (X, d) such that A^c is closed in X, then A is
 - (i) closed in X
 - (ii) open in X
 - (iii) Both open and closed in X
 - (iv) None of the above

(Choose the correct option)

- (h) Show that the closure \overline{F} of $F \subseteq X$, where (X, d) is a metric space, is closed.
- (i) Define a contraction mapping on a metric space.
- (j) Which of the following statements are true?
 - (i) A singleton set {x} in any metric space is always connected.
 - (ii) The interval [2, 3) is not connected in the usual metric space (\mathbb{R}, d) .
 - (iii) If (X, d) is a connected metric space, there exists a proper subset of X which is both open and closed in X.
 - (iv) Closure of a connected set in a metric space is connected.

 (Choose the correct option)

- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Let f(x) = x on [0, 1] and $P = \left\{ x_i = \frac{i}{8}, i = 0, 1, 2, \dots 8 \right\}$

Find L(f, P) and U(f, P)

- (b) Prove that $\overline{(\alpha+1)} = \alpha \overline{\alpha}$
- (c) Show that the discrete metric space is a complete metric space.
- (d) Let (X, d) be a metric space and $\overline{S}(x, r) = \{y \in X : d(x, y) \le r\}$ be a closed ball in X. Prove that $\overline{S}(x, r)$ is closed.
- (e) Prove that if Y is a connected set in a metric space (X, d), then any set Z such that $Y \subseteq Z \subseteq \overline{Y}$ is connected.
- 3. Answer **any four** questions: $5 \times 4 = 20$
 - (a) Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove that f is integrable.
 - (b) Show that $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{2n+k} = \log \frac{3}{2}$

- (c) Define an open ball in a metric space. Prove that in any metric space (X, d), each open ball is an open set. 1+4=5
- (d) Let (X, d_X) and (Y, d_Y) be two metric spaces. Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for all open subsets G of Y.

A continuous function may not map a

Cauchy sequence into a Cauchy sequence — Justify it.

Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$ be uniformly continuous. If $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in X, then show that $\{f(x_n)\}_{n\geq 1}$ is also a Cauchy

1+4=5

(f) Let (X, d_X) be a metric space. If every continuous function $f: (X, d_X) \to (\mathbb{R}, d)$ has the intermediate value property, then prove that (X, d_X) is a connected metric space.

sequence in Y.

Answer **either** (a) **or** (b) of the following questions: (Q.4 to Q.7) 10×4=40

- 4. (a) (i) State and prove First Fundamental Theorem of Calculus. 1+4=5
 - (ii) Discuss the convergence of the integral $\int_1^\infty \frac{1}{x^p} dx$ for various values of p.
 - (b) (i) Show that $f:[0,1] \to \mathbb{R}$ defined by $f(x) = x^n$ is integrable and $\int_0^1 f(x) dx = \frac{1}{n+1}.$
 - (ii) Let f be continuous on [a,b].

 Prove that there exists $c \in [a,b]$ such that $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$.

Use the 1st mean value theorem to prove that for $0 < a \le 1$ and

$$n \in \mathbb{N}$$
, $\int_{0}^{1} \frac{x^n}{1+x} dx \to 0$ as $n \to \infty$.

- 5. (a) (i) Let $X = \mathbb{R}$. For $x, y \in \mathbb{R}$, define $d(x, y) = \frac{|x y|}{1 + |x y|}$. Show that d is a metric on \mathbb{R} .
 - (ii) Prove that a convergent sequence in a metric space is a Cauchy sequence.Does the converse of this hold? Justify it. 4+2=6
 - (b) (i) Prove that the metric space $X = \mathbb{R}^n$ with the metric given by

$$d_p(x, y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}, p \ge 1$$

where $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n , is a complete metric space.

(ii) Let (X, d) be a metric space and F_1 , F_2 be subsets of X. Prove that $(F_1 \cup F_2)' = F_1' \cup F_2'$ and $\overline{F_1 \cup F_2} = \overline{F_1} \cup \overline{F_2}$. 3+2=5

- 6. (a) (i) Let (X, d) be a metric space and let $x \in X$ and $A \subseteq X$ be nonempty. Then prove that $x \in \overline{A}$ if and only if d(x, A) = 0.
 - (ii) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f: A \to Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
 - (b) (i) Prove that a mapping $f: X \to Y$ is continuous on X iff $f^{-1}(F)$ is closed in X for all closed subsets F of Y.
 - (ii) Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. Prove that the following statements are equivalent:
 - I. f is continuous on X

II.
$$\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$$
 for all $B \subseteq Y$

III.
$$f(\overline{A}) \subseteq \overline{f(A)}$$
 for all $A \subseteq X$

- 7. (a) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset $I \subseteq \mathbb{R}$ is connected if and only if I is an interval.
 - (b) (i) If f and g are two uniformly continuous mappings of metric spaces (X, d_X) to (Y, d_Y) and (Y, d_Y) to (Z, d_Z) respectively, then prove that $g \circ f$ is uniformly continuous mapping of (X, d_X) to (Z, d_Z) .

Show that the function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous. 4+2=6

(ii) Let (X, d) be a metric space and let $\{Y_{\lambda} : \lambda \in \wedge\}$ be a family of connected sets in (X, d) having a nonempty intersection. Prove that

$$Y = \bigcup_{\lambda \in \wedge} Y_{\lambda}$$
 is connected. 4

[Old Syllabus]

(Complex Analysis)

Full Marks: 60

Time: Three hours

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Write down the Cauchy-Riemann equations.
 - (b) Define analytic function.
 - (c) Find the argument of $\frac{1-i}{1+i}$.
 - (d) If $z_1 = 2 + i$ and $z_2 = 3 2i$, then evaluate $|3z_1 4z_2|$.
 - (e) Find $\lim_{z \to i} (z^2 + 2z)$.
 - (f) Find $((3-i)^2-3)i$.
 - (g) Express $e^{-i\frac{\pi}{4}}$ in the form a+bi.
- 2. Answer the following questions: $2\times4=8$
 - (i) Write $\frac{1-i}{3}$ in the form $re^{i\theta}$.

- (ii) Find $\left| \frac{1+2i}{-2-i} \right|$.
- (iii) Determine the points at which the function $\frac{1}{z-2+3i}$ is not analytic.
- (iv) For any two complex numbers z_1 and z_2 , prove that $|z_1 z_2| = |z_1| |z_2|$.
- 3. Answer any three questions: 5×3=15
 - (a) Prove that $f(z) = z^2 2z + 5$ is continuous everywhere in the finite plane.
 - (b) Show that $f(z) = e^z$ is analytic at every point of the complex plane.
 - (c) Evaluate $\frac{1}{2\pi i} \oint_C \frac{e^z}{z-2}$, where C is the circle |z| = 1.
 - (d) If $f(z) = z^3 2z$; $z \in \mathbb{C}$, then find f'(z) at z = -1, provided the value exists.

13

- (e) Let $f(z) = \begin{cases} z^2, & z \neq i \\ 0, & z = i \end{cases}$, prove that f(z) is not continuous at z = i.
- 4. Answer any three questions: 10×3=30
 - (i) Prove that the necessary and sufficient conditions for the complex function $\omega = f(z) = u(x,y) + iv(x,y)$ to be analytic in a region R are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

where all partial derivatives are assumed to be continuous on R.

(ii) If f(z) is analytic with its derivative f'(z) continuous at all points inside and on a simple closed curve C, prove that $\int_C f(z)dz = 0$

(iii) Prove that if f(z) is integrable along a curve C having finite length L and if there exists a positive number M such that $|f(z)| \le M$ on C, then

$$\left|\int\limits_C f(z)dz\right| \leq ML.$$

- (iv) (a) Find the analytic function whose real part is $u = e^{-x} \Big[\big(x^2 y^2 \big) \cos y + 2xy \sin y \Big].$
 - (b) Show that the function $f(z) = \sin x \cosh y + i \cos x \sinh y$ is entire. 5
- (v) (a) State and prove Cauchy's Integral Formulae. 7
 - (b) Evaluate $\frac{1}{2\pi i} \int_C \frac{e^z}{z-2} dz$, where C is the circle |z| = 3.

(vi) (a) Suppose that
$$z_n = x_n + iy_n, (n = 1, 2, 3...) \text{ and}$$

$$z = x + iy. \text{ Prove that } \lim_{n \to \infty} z_n = z$$
 if and only if $\lim_{n \to \infty} x_n = x$ and
$$\lim_{n \to \infty} y_n = y.$$
 5

(b) Show that,
$$z^2 e^{3z} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^n$$
, $(|z| < \infty)$.