3 (Sem-6/CBCS) MAT HC2

2025

MATHEMATICS

(Honours Core)

Paper: MAT-HC-6026

(Partial Differential Equations)

Full Marks: 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (i) Which of the following methods can be used to construct a first-order partial differential equation?
 - (a) By differentiating a given function with respect to multiple independent variables
 - (b) By eliminating one or more arbitrary constants from a given relation

- (c) By integrating a given function with respect to the dependent variable
- (d) None of the above (Choose the correct answer)
- (ii) Along every characteristic strip of the equation F(x, y, z, p, q) = 0, the function F(x, y, z, p, q) is _____.

 (Fill in the blank)
- (iii) Charpit's method can be applied to both linear and nonlinear first-order partial differential equations.

(State True or False)

- (iv) What is the primary goal of transforming a first-order linear PDE into its canonical form?
 - (a) To simplify the equation and make it easier to solve, often using characteristic curves
 - (b) To eliminate the need for the method of characteristics
 - (c) To ensure the equation has only one variable

(d) To convert the equation into a second-order PDE.

od to muz od a (Choose the correct answer)

- (v) In the method of separation of variables, we assume a solution of the form u(x,y) = X(x)Y(y), leading to two ODEs. The constant λ that arises from separation is known as the _____ constant. (Fill in the blank)
 - (vi) Which of the following is a characteristic of a hyperbolic second-order linear partial differential equation?
 - (a) It describes steady-state phenomena
 - (b) It describes systems in equilibrium
 - (c) It models wave propagation
 - (d) It has a solution that does not change over time

(Choose the correct answer)

(vii) The general solution of a linear secondorder partial differential equation with
constant coefficients is the sum of the
(the solution to the
corresponding homogeneous equation)
and the particular integral (a solution
to the non-homogeneous equation).

more seeing tark & materials (Fill in the blank)

2. Answer in short:

2×4=8

- (i) Define first-order quasi-linear and semilinear partial differential equations.
- (ii) Construct the first-order partial differential equation for the family of surfaces defined by $z = x^2 + y^2 + xy + C$, where C is a constant.
- (iii) State the basic idea behind Cauchy's method of characteristics for solving nonlinear first-order partial differential equations.
- (iv) Determine whether the following equation is parabolic, elliptic or hyperbolic.

$$u_{xx} + x^2 u_{yy} = 0$$

3. Answer any three:

5×3=15

- (i) Find the integral surface of the equation $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$ which contains the straight line x+y=0, z=1.
- (ii) Define the concept of 'general integral' of a first-order nonlinear partial differential equation. Explain it for the equation $z^2(1+p^2+q^2)=1$.
 - (iii) Reduce to canonical form and find the general solution of $u_x + xu_y = y$.
 - (iv) Apply $\sqrt{u} = v$ and v(x, y) = f(x) + g(y) to solve the equation $x^4 u_x^2 + y^2 u_y^2 = 4u$.
 - (v) Find the characteristic curves and then reduce the equation $u_{xx} + (2\cos cy)u_{xy} + (\cos c^2y)u_{yy} = 0$ to the canonical form.
- 4. Answer the following: 10×3=30
 - Find a complete integral of the equation $(p^2 + q^2)x = pz$ and deduce the solution which passes through the curve $x = 0, z^2 = 4y$.

5

Find the integral surface - sylog juation

$$(p_1 + x_1)^2 + (p_2 + x_2)^2 + (p_3 + x_3)^2 = 3(x_1 + x_2 + x_3)$$

by Jacobi's method.

(ii) Apply the method of separation of variables u(x, y) = f(x)g(y) to solve the equation $y^2u_x^2 + x^2u_y^2 = (xyu)^2$,

$$u(x,0) = 3exp\left(\frac{x^2}{4}\right).$$

(iv) Apply $\sqrt{u} = v \approx \mathbf{q} \mathbf{0} \ v (x, y) = f(x) + g(y)$

Apply $v = \ln u$ and then v(x, y) = f(x) + g(y) to solve the equation $x^2 u_x^2 + y^2 u_y^2 = (xyu)^2$.

- (iii) Determine the region in which the given equation is hyperbolic, parabolic, or elliptic, and transform the equation in the respective region to canonical form.
 - $(a) \quad u_{xx} + xyu_{yy} = 0$
 - (b) $u_{xx} + u_{xy} xu_{yy} = 0$

Find the general solutions of the following equations:

- (a) $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = 0$
- (b) $3u_{xx} + 10u_{xy} + 3u_{yy} = 0$