3 (Sem-5/CBCS) PHY HE 3

(a) If A=

2023

PHYSICS

(Honours Elective) and reward

Paper: PHY-HE-5036

(Advanced Mathematical Physics - I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) What is isomorphism in case of a vector space?
 - (b) Define associated tensor.
 - (c) What is field? Give two examples.
 - (d) State quotient law of tensors.
 - (e) Write the scalar triple product $\vec{A} \cdot (\vec{B} \times \vec{C})$ using tensor notation.

- (f) What is Moment of Intertia tensor?
- (g) If $A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, find 2^A .
- 2. Answer the following: 2×4=8
 - (a) Show that diagonalizing matrix of a symmetric matrix is orthogonal.
 - (b) Show that the vectors $W_1 = [2, 1, 1]$, $W_2 = [-2, 1, 2]$ and $W_3 = [0, 0, 1]$ are linearly independent.
 - (c) What is Minkowski space? Define a four vector in this space.
 - (d) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.
- 3. Answer **any three** of the following question: $5\times 3=15$
 - (a) What is binary operation? Determine the identity element and inverse for the following binary operation:

$$(a,b)*(c,d)=(ac,bc+d).$$
 1+4=5

(b) Diagonalize the matrix

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

- (c) (i) If a contravariant tensor of rank two is symmetric in one coordinate system, show that it is symmetric in any co-ordinate system.
 - one, verify whether $\frac{\partial A_{\lambda}}{\partial x^{\mu}}$ is a tensor or not.
 - (d) (i) Find the number of independent components of a second rank symmetric tensor in n-dimensional space. 2
- (ii) Using the relation $ds^2 = g_{ij} dx^i dx^j, \text{ prove that } g_{ij}$ to subora is a symmetric tensor.

- Using tensor-analysis, show that: 2+3=5
 - $\varepsilon_{ils} \, \varepsilon_{mls} = 2 \, \delta_{im}$
 - $\vec{\nabla} \cdot \vec{A}$ is an invariant.
- 4. Answer any three of the following questions : mater e estadoro 10×3=30
 - Define basis and dimension of a linear vector space. If x, y, z are linearly independent vectors, determine whether the vector x+y, y+z and z+x are linearly dependent or not. 2+3=5
 - Use ε_{iik} to find the vector ndependent associated with the following antisymmetric tensor of rank two:

$$\begin{bmatrix} 0 & 1 & -3 \\ -1 & 0 & 2 \\ 3 & -2 & 0 \end{bmatrix}$$

and to express cross product of vectors \vec{A} and \vec{B} . 3+2=5

(i) What is Group? Check whether the set I of all integers with the binary operation * defined by a*b=a+b+1 forms a Group.

1+4=5

Show that every linearly independent vector belonging to a vector space has a unique representation as a linear combination of its bases vector.

(i) Using tensor analysis prove the following vector identities: components of a vector are

2+2+3=7

(a)
$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$

(b)
$$\vec{\nabla} \times (\phi \vec{A}) = \phi (\vec{\nabla} \times \vec{A}) + \vec{\nabla} \phi \times \vec{A}$$

near box (c)
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$

second order the Find antisymmetric tensor associated with the vector $2\hat{i} - 3\hat{j} + \hat{k}$.

(d) (i) Solve the coupled linear differential equations using matrix method:

$$y_1' = 2y_1 + 3y_2$$

 $y_2' = 4y_1 + y_2$

to led independent vector belonging to

where $y_1(0) = 2$, $y_2(0) = 1$.

- (ii) Show that in Cartesian coordinate system, the contravariant and covariant components of a vector are identical.
- (e) What is matric tensor g_{qr} ? Calculate the co-efficients of matric tensor in spherical polar co-ordinate and then write the matric tensor. Prove that the matric tensor g_{qr} is a symmetric covarient tensor of order 2. 2+2+6=10

(f) (i) State Hooke's law in elasticity using tensor notation. If ε_{ij} 's denote fractional deformation, establish the relation,

 $\delta = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$, where δ is the change in volume associated with the deformation. 2+5=7

(ii) Prove that eignevalues of a hermitian matrix are real. 3

1+4=5