Total number of printed pages-16

3 (Sem-5/CBCS) MAT HC 1 (N/O)

2023

MATHEMATICS

(Honours Core)

OPTION-A (For New Syllabus)

Paper: MAT-HC-5016

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Which point on the Riemann sphere represents ∞ of the extended complex plane CU{∞}?
 - (b) A set $S \subseteq \mathbb{C}$ is closed if and only if S contains each of its _____ points.

 (Fill in the gap)

- (c) Write down the polar form of the Cauchy-Riemann equations.
- (d) The function $f(z) = \sinh z$ is a periodic function with a period ______. (Fill in the gap)
- (e) Define a simple closed curve.
- (f) Write down the value of the integral $\int_C f(z) dz$, where $f(z) = ze^{-2}$ and C is the circle |z| = 1.
- (g) Find $\lim_{n\to\infty} z_n$, where $z_n = -1 + i\frac{(-1)^n}{n^2}$.
- 2. Answer the following questions: 2×4=8
 - (a) Let $f(z) = i\frac{z}{2}$, |z| < 1. Show that $\lim_{z \to 1} f(z) = \frac{i}{2}$, using $\varepsilon \delta$ definition.
 - (b) Show that all the zeros of sinhz in the complex plane lie on the imaginary axis.

- (c) Evaluate the contour integral $\int_C \frac{dz}{z}$, where C is the semi circle $z = e^{i\theta}$, $0 \le \theta \le \pi$
- (d) Using Cauchy's integral formula, evaluate $\int_C \frac{e^{2z}}{z^4} dz$, where C is the circle |z| = 1.
- 3. Answer **any three** questions from the following: 5×3=15
 - (a) Find all the fourth roots of -16 and show that they lie at the vertices of a square inscribed in a circle centered at the origin.
 - (b) Suppose f(z)=u(x, y)+iv(x, y), (z=x+iy) and $z_0=x_0+iy_0$, $w_0=u_0+iv_0$. Then prove the following:

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0,$$

$$\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0,$$
if $\lim_{z\to z_0} f(z) = w_0$.

- (c) (i) Show that the function f(z) = Rez is nowhere differentiable.
 - (ii) Let $T(z) = \frac{az+b}{cz+d}$, where $ad-bc \neq 0$. Show that $\lim_{z \to \infty} T(z) = \infty$ if c = 0.
- (d) Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Show that

$$\left| \int_C \frac{z+4}{z^3-1} \, dz \right| \le \frac{6\pi}{7}$$

- (e) State and prove fundamental theorem of algebra.
- 4. Answer any three questions from the following: 10×3=30
 - (a) (i) Show that $exp(z+\pi i) = -exp(z)$
 - (ii) Show that $log(-1+i)^2 \neq 2log(-1+i)$ 2

- (iii) Show that $|\sin z|^2 = \sin^2 x + \sinh^2 y$ 2
- (iv) Show that a set $S \subseteq \mathbb{C}$ is unbounded if and only if every neighbourhood of the point at infinity contains at least one point of S.
- (b) (i) Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$, $g'(z_0)$ exist with $g'(z_0) \neq 0$. Using the definition of derivative show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$
 5

- (ii) Show that $z^{2}e^{3z} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^{n},$ where $|z| < \infty$.
- (c) State and prove Laurent's theorem.
- (d) (i) Using definition of derivative, show that $f(z) = |z|^2$ is nowhere differentiable except at z = 0. 5

5

(ii) Define singular points of a function. Determine singular points of the functions:

$$f(z) = \frac{2z+1}{z(z^2+1)};$$

$$g(z) = \frac{z^3 + i}{z^2 - 3z + 2}$$
 1+4=5

- (e) (i) Let f(z) = u(x, y) + iv(x, y) be analytic in a domain D. Prove that the families of curves $u(x, y) = c_1$, $v(x, y) = c_2$ are orthogonal.
 - (ii) Let C denote a contour of length L and suppose that a function f(z) is piecewise continuous on C. If M is a non-negative constant such that

 $|f(z)| \le M$ for all z in C then show that

$$\left| \int_C f(z) dz \right| \le ML \cdot 5 + 5 = 10$$

- (f) (i) Prove that two non-zero complex numbers z_1 and z_2 have the same moduli if and only if $z_1 = c_1 c_2$, $z_2 = c_1 \overline{c_2}$, for some complex numbers c_1, c_2 .
 - (ii) Show that mean value theorem of integral calculus of real analysis does not hold for complex valued functions w(t).
 - (iii) State Cauchy-Goursat theorem.
 - (iv) Show that $\lim_{z\to\infty} \frac{z^2+1}{z-1} = \infty$. 2

OPTION-B

(For Old Syllabus)

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 10 = 10$
 - (a) Write the statement of the First Fundamental Theorem of Calculus.
 - (b) Evaluate $\int_0^\infty e^{-x} dx$, if it exists.
 - (c) Prove that $\Gamma(1)=1$.
 - (d) Define a complete metric space.
 - (e) Describe an open ball in the discrete metric space (X, d).
 - (f) $(A \cup B)^0$ need not be $A^0 \cup B^0$ Justify it where A and B are subsets of a metric space (X, d).
 - (g) Find the derived sets of the intervals (0,1) and [0,1].

- (h) Let A and B be two subsets of a metric space (X; d). Which of the following is not correct?
 - (i) $A \subseteq B \Rightarrow A' \subseteq B'$
 - (ii) $(A \cap B)' \subseteq A' \cap B'$
 - (iii) $A' \cap B' \subseteq (A \cap B)'$
 - (iv) $(A \cup B)' = A' \cup B'$
- (i) The Euclidean metric on \mathbb{R}^n is defined as

(i)
$$d(x, y) = \left\{ \sum_{i=1}^{n} (x_i - y_i)^2 \right\}^{\frac{1}{2}}$$

(ii)
$$d(x, y) = \left\{ \sum_{i=1}^{n} |x_i - y_i|^p \right\}^{\frac{1}{p}}$$
where $p \ge 1$

(iii)
$$d(x, y) = \max_{1 \le i \le n} |x_i - y_i|$$

(iv)
$$d(x, y) = \sup_{1 \le i \le n} |x_i - y_i|$$
where $x = (x_1, x_2, \dots x_n)$

ere
$$x = (x_1, x_2, \dots x_n)$$

 $y = (y_1, y_2, \dots y_n)$

are any two points in \mathbb{R}^n .

(Choose the correct answer)

(j) Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$ be continuous on X. Then for any $B \subseteq Y$.

(i)
$$f^{-1}(\overline{B}) \subset \overline{f^{-1}(B)}$$

(ii)
$$\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$$

(iii)
$$\overline{f(B)} \subset f(\overline{B})$$

(iv)
$$f(\overline{B}) \subset \overline{f(B)}$$

(Choose the correct answer)

2. Answer the following questions: $2\times5=10$

(a) Let
$$f(x) = x$$
 on $[0, 1]$ and $P = \left\{ x_i = \frac{i}{4}, i = 0, 1, \dots, 4 \right\}$

Find L(f, P) and U(f, P).

(b) Let $f: [0, a] \to \mathbb{R}$ be given by $f(x) = x^2$. Find

$$\int_{0}^{a} f(x) dx$$

- (c) Let (X, d) be a metric space and A, B be subsets of X. Prove that $(A \cap B)^0 = A^0 \cap B^0$.
- (d) If A is a subset of a metric space (X, d), prove that $d(A) = d(\overline{A})$.
- (e) Let (X, d_X) and (Y, d_Y) be two metric spaces. Prove that if a mapping $f: X \to Y$ is continuous on X, then $f^{-1}(G)$ is open in X for all open subsets G of X.
- 3. Answer **any four** parts: 5×4=20
 - (a) Prove that $f(x) = x^2$ on [0, 1] is integrable.
 - (b) Show that $\lim_{n\to\infty}\sum_{r=1}^n\frac{r}{r^2+n^2}=\log\sqrt{2}$
 - (c) Let (X, d) be a metric space. Define $d': X \times X \to \mathbb{R}$ by

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)} \text{ for all }$$

 $x, y \in X$. Prove that d' is a metric on X.

- (d) Let X = c[a, b] and $d(f, g) = \sup\{|f(x) g(x)| : a \le x \le b\}$ be the associated metric where $f, g \in X$. Prove that (X, d) is a complete metric space.
- (e) Let (X, d) be a metric space. Prove that a finite union of closed sets is closed.
 Infinite union of closed sets need not to closed Justify it. 3+2=5
- (f) Let (X, d_X) and (Y, d_Y) be two metric spaces and $f: X \to Y$ be uniformly continuous. If $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in X, prove that $\{f(x_n)\}_{n\geq 1}$ is a Cauchy sequence in Y.
- 4. Answer *any four* parts : 10×4=40
 - (a) (i) Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove that f is integrable. 5
 - (ii) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ for various values at p.

(b) (i) Let $f: [a, b] \to \mathbb{R}$ be continuous on [a, b]. Prove that there exists $c \in [a, b]$ such that

$$\frac{1}{b-a}\int_a^b f(x)\,dx=f(c)$$

Using it prove that for -1 < a < 0. and $n \in \mathbb{N}$,

3+2=5

$$S_n = \int_a^0 \frac{x^n}{1+x} dx \to 0 \text{ as } n \to \infty$$

(ii) Let $f:[a,b] \to \mathbb{R}$ be monotone. Prove that there exists $c \in [a,b]$ such that

$$\int_{a}^{b} f(x) dx = f(a)(c-a) + f(b)(b-c)$$

- (c) (i) Prove that a convergent sequence in a metric space is a Cauchy sequence.

 Show that in the discrete metric space every Cauchy sequence is convergent.

 3+2=5
 - (ii) Define an open set in a metric space (X, d).
 Prove that in any metric space (X, d), each open ball is an open set.

13

- (d) (i) Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if F^c is open in X.
 - (ii) Let (X, d) be a metric space and Y a subspace of X. Let Z be a subset of Y. Prove that Z is open in Y if and only if there exists an open set $G \subseteq X$ such that $Z = G \cap Y$.
- (e) (i) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f: A \to Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
 - (ii) Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(F)$ is closed in X for all closed subsets F of Y.

- (f) (i) Show that the function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous.
 - (ii) Let (X, d) be a metric space and let $x \in X$ and $A \subseteq X$ be non-empty. Prove that $x \in A$ if and only if d(x, A) = 0.
- (g) (i) Define a connected set in a metric space. Prove that if Y is a connected set in a metric space (X, d), then any set Z such that $Y \subseteq Z \subseteq \overline{Y}$ is connected.
 - (ii) Let (X, d) be a metric space. Prove that the following statements are equivalent:
 - (a) (X, d) is disconnected

15

(b) there exists a continuous mapping of (X, d) onto the discrete two element space. (X_0, d_0) .

5

(h) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset I of \mathbb{R} is connected if and only if I is an interval.